Publikationen

Buchkapitel
Amend, W.K. Aicher, A. Stenzl (2016)
Regenerative Therapies - from protocol to patient
G. Steinhoff, H. Tu-Rapp (eds)
Springer, Heidelberg (in press)

Übersichtsarbeiten
Smooth muscle-like cells generated from human mesenchymal stromal cells display marker gene expression and electrophysiological competence comparable to bladder smooth muscle cells.
PLOS One (accepted for publication in Dec 2015)

Regeneration of degenerated urinary sphincter muscles: Development of improved stem cell-based surgical methods and novel imaging technologies.
Cell Transplantation (in press)

Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns.
Stem Cell Int. ID#743564

Mesenchymal stromal cells for sphincter regeneration.

New technique for needle-less implantation of eukaryotic cells.

Labelling and tracking of human mesenchymal stromal cells in preclinical studies and large animal amodels of degenerative diseases.
Towards a treatment of stress urinary incontinence: Application of mesenchymal stromal cells for regeneration of the sphincter muscle.

Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment.
J. Structural Biol. 183: 505 - 511

Low osteogenic differentiation potential of placenta-derived mesenchymal stromal cells correlates with low expression of transcription factors Runx2 and Twist2
Stem Cells Dev 22: 2859 - 2872

Cell based therapy for the deficient urinary sphincter
Current Urology Reports 14: #5 DOI: 10.1007/s11934-013-0352-7